Linear algebra (eigenvectors, eigenvalues, matrix algebra, Gershgorin's circle theorem, inner products, projections)

Calculus (differentiation, integration, integration over lines, surfaces and domains, integral theorems (Gauss, Green))

Partial differential equations (definition, heat, Laplace, Poisson, wave equation))

Introductory numerical analysis (numerical time integration, interpolation, finite differences, quadrature, approximation methods for nonlinear equations)

Aim of the course

After completion of the course, the student will be able to construct and to use finite-element methods to solve partial differential equations. Furthermore, the student will be able to assess the quality of the obtained numerical approximations.

The course aims at learning how to apply and construct finite-element methods to various kinds of partial differential equations. The emphasis will be on the application and implementation of the finite-element methods. Theoretical issues will be assessed superficially and only if needed. The finite-element formalisms due to Ritz and Galerkin will be treated. The course will include linear, quadratic, bilinear elements for time-independent and time dependent problems. Several lab assignments will be helpful in gaining understanding in the development of finite-element methods.


F. Vermolen (TUD) J.J.W. van der Vegt (UT) J. Maubach (TUe)